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Abstract The seemingly paradoxical increase of a species population size in
response to an increase in its mortality rate has been observed in several continuous-
time and discrete-time models. This phenomenon has been termed the “hydra effect”.
In light of the fact that there is almost no empirical evidence yet for hydra effects in
natural and laboratory populations, we address the question whether the examples that
have been put forward are exceptions, or whether hydra effects are in fact a common
feature of a wide range of models. We first propose a rigorous definition of the hydra
effect in population models. Our results show that hydra effects typically occur in the
well-known Gause-type models whenever the system dynamics are cyclic. We discuss
the apparent discrepancy between the lack of hydra effects in natural populations and
their occurrence in this standard class of predator–prey models.

Keywords Consumer–resource models · Gause-type model · Population cycles ·
Allee effect · Mean population density · Population extinction
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1 Introduction

In a recent review Abrams (2009) discusses the counterintuitive increase of a species
population size in response to an increase in its mortality rate. This phenomenon has
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been termed “hydra effect” by Abrams and Matsuda (2005), after the nine-headed
beast from Greek mythology that would grow two more heads for each that was cut
off. Effects that qualify as hydra effects had already been described by Ricker (1954)
and, without necessarily calling them hydra effects, they have been shown to occur in
discrete-time (Sinha and Parthasarathy 1996; Schreiber 2003; Hilker and Westerhoff
2006; Seno 2008; Zipkin etal. 2009; Liz 2010; Dattani et al. 2011) and continuous-time
models (Abrams et al. 2003; Matsuda and Abrams 2004) as well as in delay differen-
tial equations (Terry and Gourley 2010); see also Abrams (2009) for more references.
As has been pointed out by Abrams (2009), empirical evidence for hydra effects is
rare and this poses the question whether this is due to a lack of appropriate observa-
tions or due to shortcomings of the underlying theoretical models. This question is
complicated by the fact that analytical results concerning the hydra effect are also rare
and mainly heuristic explanations have been given to define and explain hydra effects
in ecological terms. Abrams (2009) names, for example, altered population cycles,
consumer mortality leading to more prudent resource exploitation and temporal sepa-
ration of mortality and density-dependent processes as possible mechanisms leading
to hydra effects. These explanations are illustrated by numerical simulations, focusing
on a few well-known models. While this already shows that hydra effects are not an
uncommon phenomenon in ecological models, we propose to rigorously define the
term “hydra effect”. This allows to formalize the understanding of the term and to
derive analytical results. This is the purpose of this paper, where we will address the
phenomenon of the hydra effect in a series of continuous-time models.

Our main analytical results are (a) that hydra effects are typical for Gause-type pred-
ator–prey models and (b) that they occur whenever an unstable coexistence equilibrium
exists. Our results also imply that increasing predator mean densities occur necessar-
ily right before a further increase in predator mortality may drive the population to
extinction, thereby giving a false impression of the healthiness and sustainability of
the population.

The paper is organized as follows. The next section introduces a general population
model and some basic notation. The third section recalls some well-known results
regarding mean values of solutions to differential equations and it gives a rigorous
definition of the hydra effect. The fourth section contains the main result that hydra
effects are a typical feature of Gause-type predator–prey models. This is illustrated by
a suite of some of the most commonly used examples. The fifth section discusses hydra
effects in a three-species model. Finally, the last section discusses the implications of
the results and identifies avenues for future research.

2 Population models and mortality rates

We adopt the basic assumption that the population dynamics of an ecological com-
munity of n species can be modeled by the parameter-dependent differential equation

Ẏ = f (Y,m), (1)

with f : D ⊆ Rn → Rn and Ẏ = dY
dt . The domain D of the vectorfield f is assumed

to be an open subset of Rn and will be referred to as the phase space of system (1).
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The biologically reasonable subset of the phase space is D≥0 = D ∩ Rn≥0, where
R≥0 denotes the non-negative real numbers. Correspondingly, the strictly positive real
numbers are denoted R>0. A solution Y is given by a real-valued function Y (t, ξ,m)
satisfying (1), which depends on the initial condition ξ ∈ D and the parameter m.
The components Y = (y1, . . . ,yn) of a solution correspond to the population densi-
ties of the n respective species, and the i th component of f = ( f1, . . . , fn) describes
the growth and interaction of the i th species. We make the following assumptions
concerning the vectorfield f . First, f is assumed to be sufficiently smooth, being
at least C1 in Y and m on the open set D × R>0. Second, since (1) is supposed to
describe the population dynamics of biological species, we require that all components
of Y (t, ξ) with ξ ∈ D≥0 remain non-negative for all times. Third, we assume that all
solutions eventually enter and remain in a compact absorbing set K ⊂ D≥0, e.g. the
population densities of all species are ultimately bounded. These assumptions ensure
the uniqueness and existence of solutions starting in D≥0 for all forward times. Note
that throughout this paper by an equilibrium or stationary solution we mean a point
satisfying f (ξ) = 0 and by a cycle we mean a periodic solution with Y (t) = Y (t +T )
for all t and some period T > 0 so that Y (t) �= Y (t + τ) for 0 < τ < T .

While we make no assumptions about the particular form of the functions fi , for
the sake of clarity we deliberately restrict our analysis to systems where the growth
and interaction rate of at least one species can be written as

fi (Y,m) = gi (Y )− myi ,

where gi and f j , j �= i do not depend on m. The parameter m > 0 will be denoted
as per-capita mortality rate of species i . Note that mortality rate in the sense of this
assumption may not only include the natural mortality rate of a species, but also
processes such as harvesting, culling or other forms of removal.

For many ecological systems, it is important to understand how the population size
of a focal species responds to an increase in its mortality rate. When the population
dynamics approach an equilibrium, this amounts to solving an algebraic problem.
However, when there are nonequilibrium dynamics, the problem becomes much more
difficult since one has to assess the mean population size, where ideally the average
is taken over a long time interval to avoid the influence of transient effects.

3 Definition of mean population density and the hydra effect

As indicated in the previous section, we are often interested in the long-term behavior
of solutions to Eq. (1) and in particular the mean abundance of a population. The
following definition of the average size of a population is the one implicitly used in
all previous studies that have addressed the hydra effect.

Definition 1 Let φ : M × R>0 → Rn be the mean value map

φ(ξ,m) = lim
t→∞

1

t

t∫

0

Y (s, ξ,m) ds,
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where M ⊆ D is the subset of initial conditions for which the limit on the right-hand
side exists. The map assigns to a point ξ ∈ M and a mortality rate the asymptotic mean
value of the parameter-dependent solution Y (t, ξ,m) through this point. Integration of
the solution Y is componentwise as usual and φi (ξ,m) is the asymptotic mean value
of the i th species. If either the initial condition or the mortality rate is fixed, we will
frequently simplify notation to φ(m) or φ(ξ), respectively.

Note that in general M will be a proper subset of the phase space D. For exam-
ple, consider a model of nontransitive competition, in which three species coexist via
cyclic domination—an ecological variant of the rock-scissors-paper game (May and
Leonard 1975). For this model Gaunersdorfer (1992) has shown that asymptotic mean
values do not exist for large regions of the phase space. This result is related to the
formation of a heteroclinic cycle connecting three equilibrium points and the expo-
nentially lengthening periods of time a solution approaching this cycle spends in the
vicinity of each of these equilibria.

Nevertheless, the existence of the asymptotic mean value is ensured in the situations
we are mainly concerned with. Therefore, let us first recall the notion of the stable set
of a solution.

Definition 2 The stable set A(Y ) of a solution Y (t, ξ) is the set of all points which
get attracted to Y for large times:

A(Y ) = {η ∈ D|∃ t0 ≥ 0 : Y (t0, ξ) = ξ0 and lim
t→∞ ‖X (t, η)− Y (t, ξ0)‖ = 0}.

Since we are only interested in positive solutions, a solution Y (t, ξ) is called globally
stable if it attracts all strictly positive initial conditions.

The following result now implies that the mean value map, if it is well defined, is in
fact constant on the stable set of a solution.

Proposition 1 Let Y (t, ξ) be a solution of (1) and let φ(ξ) exist. Then φ(η) = φ(ξ)

for all η ∈ A(Y ).

Proof Let φ(ξ) = L . We first observe that this mean value is of course the same
for all points on the solution Y (t, ξ). Namely, with Y (t0, ξ) = ξ0 for some t0 > 0 a
reparametrization of time yields

φ(ξ) = lim
t→∞

1

t

t∫

0

Y (s, ξ) ds = lim
t→∞

1

t

⎡
⎣

t0∫

0

Y (s, ξ) ds +
t∫

t0

Y (s, ξ) ds

⎤
⎦

= lim
t→∞

1

t

t∫

t0

Y (s, ξ) ds = lim
t→∞

1

t

t∫

0

Y (s, ξ0) ds = φ(ξ0).

Now assume that a different solution X (t, η)withη ∈ A(Y ) exists. Then there is a ξ0 so
that limt→∞ ‖X (t, η)−Y (t, ξ0)‖ = 0, which implies limt→∞[xi (t, η)−yi (t, ξ0)] = 0
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for each coordinate i = 1, . . . , n. Now define Fi (t) = ∫ t
0 [xi (s, η)− yi (s, ξ0)] ds and

G(t) = t . Then limt→∞ G(t) = ∞ and using L’Hôpital’s rule we obtain:

lim
t→∞

Fi (t)

G(t)
= lim

t→∞
F ′

i (t)

G ′(t)
= lim

t→∞[xi (t, η)− yi (t, ξ0)] = 0.

Now, since φi (ξ0) = limt→∞ 1
t

∫ t
0 yi (s, ξ0) ds = Li and

lim
t→∞

Fi (t)

G(t)
= lim

t→∞

⎡
⎣1

t

t∫

0

xi (s, η) ds − 1

t

t∫

0

yi (s, ξ0) ds

⎤
⎦ = 0,

this implies φi (η) = φi (ξ0) = Li .

Before proceeding, let us turn to two important special cases in which we need not
consider infinite time intervals to obtain the asymptotic mean value. In the case of a
stationary solution the mean value is of course the equilibrium value itself and thus
equilibria of (1) are fixed points of the mean value map. And for periodic solutions
the asymptotic mean value can obviously be obtained from a single period. This is
summarized in the following proposition.

Proposition 2 Let Y (t, ξ) be a solution of (1).

(i) If ξ is an equilibrium, then φ(ξ) = ξ .
(ii) If Y is a cycle with period T , then φ(ξ) = 1

T

∫ T
0 Y (s, ξ) ds.

During the following analysis we will be mainly concerned with these two special
cases for which asymptotic mean values surely exist. However, in a more general set-
ting ergodic theory tells us when these long time averages are well defined (Eckmann
and Ruelle 1985).

Now that we have recalled some basic properties of the mean value map φ(ξ,m),
we can study how the mean population density of a species changes with respect to its
mortality rate. Intuitively, in an ecological scenario one would expect a species mean
population density to decrease if its mortality increases for some reason. The appar-
ently paradoxical situation, where the mean population density of a species increases
in response to an increasing mortality rate, has been termed the hydra effect.

Definition 3 Species i is said to experience a hydra effect, if there exist an initial con-
dition ξ ∈ D≥0 and mortality rates m1 < m2 so thatφi (ξ,m1) < φi (ξ,m2). The hydra
effect is smooth if φi (ξ,m) is continuous on [m1,m2], otherwise it is non-smooth.

Note that this definition distinguishes two qualitatively different types of hydra effects.
Smooth hydra effects occur when an attractor of system (1) smoothly changes its
position or shape in phase space in response to a change in the mortality rate. The
simplest example of a smooth hydra effect would be given by a stable equilibrium
E∗ = (y∗

1 , . . . , y∗
n ) of system (1), for which ∂y∗

i /∂m > 0 holds with m being the
mortality rate of the i th species. This form of a smooth hydra effect may occur in
stage-structured models which introduce a temporal separation between mortality
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and density-dependent growth, a scenario discussed by Abrams (2009) for a model
describing the dynamics of juvenile and mature subpopulations. The most prominent
examples of hydra effects are however associated with smooth changes in the ampli-
tude of population cycles (Abrams 2009), which will be discussed in Sect. 4.1 for
Gause-type predator–prey models.

On the other hand, non-smooth hydra effects are characterized by a discontinu-
ous change in a species mean population density. There are essentially two scenarios,
which can lead to non-smooth hydra effects. The first scenario arises when attractors
suddenly appear or vanish due to global bifurcations. A striking form of a non-smooth
hydra effect due to this scenario may occur when strictly positive attracting solutions
to Eq. (1) do not exist for low mortality rates, but emerge suddenly via a global bifurca-
tion. This is a typical scenario when the growth of a prey species is subject to a strong
Allee effect, cf. Sect. 4.3. The second scenario which may lead to non-smooth hydra
effects is associated with multiple coexisting attractors, where the boundaries of the
respective basins of attraction shift in response to changes in a species mortality rate.
The long-term behavior of a solution starting at a particular initial condition ξ may
then undergo a discontinuous change when ξ switches from one basin of attraction to
another. Non-smooth hydra effects due to this second scenario in a two-stage model
by Schreiber and Rudolf (2008) have been referred to as “very large magnitude hydra
effects” by Abrams (2009). Although non-smooth hydra effects may appear as espe-
cially striking since the associated jump in species mean density occurs suddenly and
without warning, this term is somewhat misleading since non-smooth hydra effects
need not be of large magnitude at all, cf. Sect. 5.

4 The hydra effect in models of purely prey-dependent predator growth

An important class of predator–prey equations is obtained by assuming that the per-
capita growth rate of each predator does not depend on its own density. These systems
will be called pure predator systems in the following, in analogy to “pure resource–
consumer systems” where the per-capita growth rates of all species are independent of
their own respective density (Turchin 2003, p. 34). In the following we will consider
mainly two- or three-dimensional systems and we write Y = (x, y, z) for the compo-
nents of respective solutions. Consequently, φx denotes the asymptotic mean density
of species x .

4.1 Gause-type models

In this section we will show that the predator typically experiences a hydra effect in a
class of standard predator–prey models. We obtain this class of models by assuming
that prey per-capita growth g and the predation term ρ are functions only of the prey
density. These assumptions lead to the general model (Gause 1934)

ẋ = g(x)x − ρ(x)y, (2)

ẏ = ερ(x)y − my, (3)
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for the prey density x and the predator density y. Here, ερ denotes the numerical
response of the predator, which accounts for the limited conversion efficiency ε. The
parameter m is the predator’s mortality rate. These general equations have been used
over decades as a cornerstone of theoretical predator–prey ecology (May 1976; Yodzis
1989; Turchin 2003). A significant feature of Eqs. (2)–(3) is that predator growth is
purely prey dependent. In ecological terms this means that predator individuals are
assumed not to interact with each other, but only indirectly through the consumption of
the prey. From now on we will consider system (2)–(3) with the following assumptions
(A)–(C).

(A) There exists 0 < K such that (x − K )g(x) < 0 for x ≥ 0, x �= K .
(B) ρ(0) = 0 and ρ′(x) > 0 for x > 0.

Assumption (A) basically introduces a self-limitation of the prey population, with
positive per-capita prey growth for all prey densities below a certain carrying capacity
K and negative per-capita growth if prey density exceeds this value. This excludes a
strong Allee effect, which we are going to study in Sect. 4.3. Assumption (B) states that
predator consumption is a strictly increasing function of prey density. This includes the
linear functional response of Lotka–Volterra type as well as functional responses with
a saturation effect (e.g., Holling-type II and III), but not type IV functional responses.
Both assumptions (A) and (B) are consistent with standard predator–prey theory and
they have clear biological interpretations. Note that under assumptions (A) and (B) all
solutions of system (2)–(3) starting in the positive quadrant are ultimately bounded
(Bauer 1979) and eventually remain in a compact subset of the phase space. As an
important consequence of (A) and (B) we have that whenever x∗ > 0 exists so that
ερ(x∗) = m, it is unique. With the non-trivial part of the prey nullcline

ν(x) = x
g(x)

ρ(x)
,

this gives rise to the unique positive equilibrium E∗ = (x∗, ν(x∗)) of Eqs. (2)–(3),
which exists for 0 < x∗ < K . The function ν will simply be denoted the prey nullcline
from now on, neglecting the trivial part x = 0.

The hydra effect is defined in terms of the mortality rate m, and due to the purely
prey-dependent predator y there is a close connection between m and the location of
the equilibrium E∗. The predation term ρ is a strictly increasing function of x , and thus
for fixed ε the equation ẏ = 0 implies a strictly increasing map x∗(m) = ρ−1(m/ε),
mapping a mortality rate to a prey density. Here, ρ−1 denotes the inverse of ρ. Set-
ting ν(m) = ν ◦ x∗ = ν(x∗(m)), we can consider the set of equilibria E∗(m) =
(x∗(m), ν(m)) as a smooth curve in phase space parameterized by the mortality rate
m. The equilibrium E∗(m) exists for all m ∈]0,m+[, where x∗(m+) = K and we
know that E∗(m) → (K , 0) as m → m+.

It is a standard result of graphical predator–prey theory that the equilibrium E∗
is locally asymptotically stable whenever ν′(x) < 0 is fulfilled, i.e. whenever the
prey nullcline has negative slope (Rosenzweig and MacArthur 1963). If on the other
hand E∗ is unstable, the Poincaré–Bendixson theorem implies that there is at least
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one cycle surrounding E∗. To rule out the existence of cycles in the case when E∗ is
locally asymptotically stable we additionally need the following assumption:

(C) (x − x∗)(ψ(x)− ψ(x∗)) > 0 for 0 < x < K , x �= x∗,

whereψ(x) = −ν′′(x)ρ(x)2/ρ′(x). This additional assumption allows the application
of Dulac’s classical theorem for the nonexistence of closed orbits to system (2)–(3).
Liu (2005) has used this approach to show that the Gause-type model (2)–(3) has no
cycles if and only if the unique equilibrium E∗ is located on a downslope of the prey
nullcline ν(x). As a corollary this extends the local asymptotic stability of E∗ to global
stability.

Corollary 1 Under assumptions (A)–(C), the equilibrium E∗ is globally stable if and
only if ν′(x∗) ≤ 0.

While assumption (C) has no straightforward biological interpretation, we note that it
is fulfilled for many of the usual choices for the prey growth term g and predation rate
ρ found in the literature. Corollary 1 immediately implies as a necessary condition for
the occurrence of a hydra effect that the coexistence equilibrium E∗ has to be unstable.

Proposition 3 If ν′(x) ≤ 0 for all 0 < x < K , then under assumptions (A)–(C) a
hydra effect of the predator population does not occur.

As a first very simple application we consider the following well-known example.

Example 1 A hydra effect does not occur in the Lotka–Volterra predator–prey model
with logistic prey growth (Volterra 1931) and linear functional response

g(x) = g1(x) = r
(

1 − x

K

)
,

ρ(x) = ρ1(x) = ax .

The prey nullcline

ν(x) = r

a

(
1 − x

K

)

is linear with negative slope −r/(aK ) and the unique equilibrium is always globally
stable. Thus, φy(m) = ν(m) decreases linearly for increasing mortality rate m.

Therefore, in terms of predator mean density, the interesting parts of the prey nullcline
are the intervals for which it has a positive slope and the corresponding equilibrium
is unstable. As mentioned, in this case the equilibrium is surrounded by at least one
cycle which lies in the strip 0 < x < K and 0 < y < ∞.

The following proposition relates the predator mean density to the prey nullcline
ν(x). It will allow us to give an upper bound for φy , which can subsequently be used
to derive a sufficient condition for the occurrence of a hydra effect in the predator
population.
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Lemma 1 For any solution Y (t, ξ) of (2)–(3) starting at strictly positive initial con-
ditions the mean predator density is given by

φy(ξ) = 1

T

T∫

0

ν(x) dτ,

where either x is the prey component of a stationary solution or it is cyclic with period
T . This implies

min{ν(x(t))|t ∈ [0, T ]} ≤ φy(ξ,m) ≤ max{ν(x(t))|t ∈ [0, T ]},

with equalities if and only if x is stationary.

Proof First observe that using Eq. (2), we can write the predator component of any
solution as

y = x
g(x)

ρ(x)
− ẋ

ρ(x)
= ν(x)− ẋ

ρ(x)
.

The Poincaré–Bendixson theorem tells us that the solution Y (t, ξ)will either approach
the unique equilibrium E∗ = (x∗, y∗) or a cycle C surrounding E∗. This implies
ξ ∈ A(E∗) or ξ ∈ A(C) and by Proposition 1 it suffices to consider the mean value of
the equilibrium E∗ or the cycle C , respectively. If it approaches E∗ the result is imme-
diate, since by Proposition 2(i) the mean value is φy(ξ) = y∗ = ν(x∗). Now assume
that Y approaches a cycle C = (x, y) with period T . Applying Proposition 2(ii) for
the mean value of cycles yields

φy(ξ) = 1

T

T∫

0

y dτ = 1

T

T∫

0

ν(x) dτ − 1

T

T∫

0

ẋ

ρ(x)
dτ

and using integration by substitution for the rightmost integral we obtain

φy(ξ) = 1

T

T∫

0

ν(x) dτ −
x(T )∫

x(0)

1

ρ(s)
ds.

Now, since C is a cycle with x(0) = x(T ) the last integral vanishes, giving the result.
The lower and upper bounds follow immediately.

The simple result that the mean predator density can be expressed in terms of the
prey nullcline immediately implies our main result, which states that the necessary
condition ν′(x) > 0 is in fact sufficient for the occurrence of a hydra effect in the
general model (2)–(3).
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Theorem 1 Under assumptions (A)–(C), a hydra effect of the predator y occurs if
and only if there exists a 0 < x < K so that ν′(x) > 0.

Proof First note that assumption (A) implies ν′(K ) < 0, that is, the prey nullcline
crosses the prey axis from above at x = K . Now let ν′(x) > 0 for some 0 < x < K .
Thus ν(x) has at least one local maximum at some point x0 < K with x0 = x∗(m0).
Then, due to Corollary 1 we have φy(ξ,m0) = ν(x0) for all ξ ∈ R>0. Now assume
that this is the only extremum of the prey nullcline ν. Then the result follows from
Lemma 1, since φy(ξ,m) < ν(x0) = φy(m0) for all ξ ∈ R>0 and all m < m0. If on
the other hand there is more than one local extremum of the prey nullcline, without
loss of generality we can assume that there is a minimum at x1 and a maximum at
x2 > x1, so that ν′(x) > 0 for x1 < x < x2. With x1 = x∗(m1) and x2 = x∗(m2) this
implies φy(m1) = ν(x1) < ν(x2) = φy(m2).

Thus, although the equilibrium is never actually attained in the case ν′(x) > 0
our result implies that an increase in predator equilibrium density is nevertheless a
necessary and sufficient condition for the occurrence of a hydra effect in the predator
population. Accordingly, the remark by Abrams (2009, p. 436) concerning a special
case of system (2)–(3) that “the average predator population size need not change in
the same direction as the equilibrium” should not be taken to imply that the mean
predator abundance does not follow an increase in its equilibrium abundance at all,
since it has to do so at least for a certain range of mortality rates.

Note that Theorem 1 is essentially an indirect result in the sense that it is not neces-
sary to know how exactly solutions are affected by changes in the mortality rate, i.e.
how the amplitude of a cycle changes when the mortality rate is increased.

4.2 Examples and the quantification of the magnitude of a hydra effect

Probably the simplest models which fulfill the requirement of Theorem 1 and which
thus allow for a hydra effect to occur are those where the prey nullcline is given by
a quadratic polynomial. A very important representative of this type of model is the
focus of the next example.

Example 2 Consider a model with logistic prey growth g(x) = g1(x) and hyperbolic
or Holling type II predation term

ρ(x) = ρ2(x) = ax
h+x .

This well-known Rosenzweig–MacArthur model (1963) has been a cornerstone of
predator–prey ecology over the last decades. The prey nullcline of this model is given
by the quadratic polynomial

ν(x) = r

a

(
1 − x

K

)
(h + x).

This nullcline has a unique maximum at prey density x0 = 1
2 (K −h), that is ν′(x0) = 0,

and the equilibrium E∗ is globally stable for x∗(m) ≥ x0. A supercritical Hopf bifur-
cation occurs at x∗(m0) = x0 (Kuznetsov 1995, p. 93) and for x∗(m) < x0 the
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equilibrium is unstable, surrounded by a unique stable limit cycle which attracts all
solutions except for E∗ (Liou and Cheng 1988). Theorem 1 tells us that a hydra effect
occurs in the Rosenzweig–MacArthur model, and we can in fact quantify the mag-
nitude of the hydra effect for this example. If the predator mortality rate is increased
from 0 to the Hopf-bifurcation value m0, the corresponding increase in mean predator
density is at least

ν(x0)− ν(0) = r

a

(
h + (K − h)2

4K

)
− rh

a
= r(K − h)2

4K a
.

This is the difference between the maximum value of the prey nullcline and the value
at its intersection with the predator axis at x = 0. To see this, let m < m0 and T be the
period of the unique asymptotically stable cycle Y . Using Lemma 1, we can bound
the mean predator density of this limit cycle from above in terms of the mean prey
density by

φy(m) = 1

T

T∫

0

ν(x) dτ = − r

aK

1

T

T∫

0

x2 dτ + r

a

[(
1 − h

K

)
φx (m)+ h

]

<
r

a

[(
1 − h

K

)
φx (m)+ h

]
.

Note that a similar estimate can in fact be made for every model with a quadratic prey
nullcline. Since ν(0) = rh

a , it remains to show that φx (m) → 0 for m → 0. Therefore
observe that the mean intrinsic growth of the predator along the periodic orbit vanishes

1

T

T∫

0

[ερ(x)− m] dτ = 1

T

T∫

0

ẏ

y
dτ = 1

T
[log(y(T ))− log(y(0))] = 0

and we obtain

1

T

T∫

0

ρ(x) dτ = m

ε
.

This simply reflects that the average numerical response of the predator along the
periodic orbit exactly outweighs its losses due to mortality during one cycle. Thus

1

T

T∫

0

ρ(x) dτ → 0 for m → 0,

where T in general depends on m. Clearly, any cycle will attain a maximum prey value
x+ > x∗ during one cycle. The claim follows immediately if x+ → 0 for m → 0,
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since φx (m) < x+ always holds. Now assume that x+ does not tend to zero for van-
ishing predator mortality m. Consider �(x) = cx with c = ρ(x+)/x+ > 0. Then
�(x+) = ρ(x+) and �(x) ≤ ρ(x) on 0 ≤ x ≤ x+, since ρ is concave downwards.
Therefore

1

T

T∫

0

ρ(x) dτ ≥ 1

T

T∫

0

�(x) dτ = cφx (m),

and by comparison φx (m) → 0 for m → 0. This result shows that low predator
mortality rates are in any case not beneficial for the prey species.

In conclusion, we have seen that for a vanishing predator mortality rate the mean
predator density tends to some value smaller than ν(0). Thus, if m is increased from 0
to the bifurcation value m0 for which x∗ intersects the prey nullcline at its maximum,
the mean predator density has to increase at least from ν(0) to ν(x0). A numerical
simulation is shown in Fig. 1a. For m very small the mean predator density φy is very
close to ν(0) and it increases over the whole range of mortality rates for which the
unique equilibrium is unstable. Once the unique equilibrium becomes stable at m0 via
the Hopf bifurcation, the predator mean density coincides with ν(x∗) and it decreases
until the predator goes extinct.

Remark 1 In the special case of slow predator and fast prey dynamics, the mean pred-
ator abundance in the cyclic regime has been derived to be φy(m) = ν(0) = rh/a
by Dercole et al. (2006). This value is independent of the predator mortality rate and
it only holds for the singular limit cycle obtained from slow–fast dynamics. Thus, in
the slow–fast special case we have φy(m) = rh/a for m < m0 and φy(m) = ν(m)
for m ≥ m0. This implies a discontinuous or “sharp increase” (Dercole et al. 2006,
Appendix A4) in mean predator abundance when the system moves from the cyclic
to the stationary regime via an increase in predator mortality rate. This corresponds
to a non-smooth hydra effect in our terminology and the increase at the Hopf bifurca-
tion point is exactly the value derived in the previous example, namely the difference
ν(m0)− ν(0).

Remark 2 The previous example also has interesting implications for the theory of
harvesting. Consider that the predator population in the previous example has a natural
mortality rate m̄ and is harvested with constant effort q. Then the combined mortality
rate of the predator is m = m̄ +q and the long-term mean yield is H = qφy(m). Now,
first, the existence of a hydra effect implies that the mean yield H depends nonlinearly
on the harvesting effort q, since φy increases with q. Second, it implies that if the
harvested predator population is in the cyclic regime, e.g. m < m0, the harvesting
effort should always be increased in order to increase the mean yield since the mean
predator density φy is maximized at m = m0. It also complements previous work
on harvesting in the Rosenzweig–MacArthur model and in tritrophic food chains (de
Feo and Rinaldi 1997; Gragnani et al. 1998). In particular, Gragnani et al. (1998)
state simple operating rules for the nutrient supply of a harvested population in order
to maximize the mean yield, which can be reformulated in the context of the hydra
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Fig. 1 Mean predator population density (solid line) versus predator mortality for a the model with a type II
functional response (Example 2) and b the model with a type III functional response (Example 3). Predator
density at the unique equilibrium (dashed line) coincides with the mean value when the equilibrium is stable
and differs from the mean value when it is unstable. The arrows indicate the location of Hopf bifurcation
points

effect in the following way: if a harvested predator experiences a hydra effect and the
underlying predator–prey system is cyclic, then increase the harvesting effort.

In Example 2 numerical simulations indicate that the mean predator density φy(m)
is strictly increasing on the whole interval of mortality rates for which ν′(m) > 0 is
fulfilled. However, as has already been observed in numerical simulations by Abrams
(2009), in some cases the overall trend of increasing mean predator density may be
reversed by significant intermediate intervals of decreasing predator mean densities.
At this point it is important to note that Theorem 1 essentially only states that φy(m)
has to increase somewhere on the interval of mortality rates for which ν′(m) > 0
is fulfilled and that it has to do so at least in the vicinity of a maximum of the prey
nullcline. The next example illustrates the case of alternating intervals of increasing
and decreasing predator mean densities.

Example 3 Let g(x) = g1(x) be of the logistic type again and let the predation term
be of Holling type III

ρ(x) = ρ3(x) = ax2

h + x2 .

This model has been analyzed by Yodzis (1989). The prey nullcline ν(m) has two extre-
mal points, a minimum at some mortality rate m1 and a maximum at some m2 > m1.
A numerical example for this model is shown in Fig. 1b. As expected, intervals of
increasing predator mean density occur, when the unique equilibrium is unstable and
surrounded by a limit cycle. There are two distinct jumps in mean population density
close to the two Hopf bifurcations occurring at the two mortality rates m1 < m2.
Shortly after the second Hopf bifurcation at m2, a sudden collapse of the predator
population occurs for a relatively small further increase of the mortality rate.
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4.3 Allee effects and non-smooth hydra effects

Species with a strong Allee effect are especially prone to cause a hydra effect in purely
prey-dependent predator populations. The presence of a strong Allee effect means that
small populations below a critical minimal viable population size (Allee threshold)
go extinct. This can be caused, e.g., by a shortage in mating partners and fertilization
opportunities at low densities, inbreeding or reductions in the effectiveness of group
activities such as anti-predator defense or social care (Allee 1931; Courchamp et al.
2008). Here, a predator with a low mortality rate may suppress the prey population
below its Allee threshold, thereby causing the extinction of both species. Translating
this scenario into a system of differential equations, this implies that at sufficiently
low predator mortality rates attracting strictly positive solutions do not exist but may
emerge only at higher mortality rates, thereby giving rise to a non-smooth hydra effect.

For a simple general setting with an Allee effect, consider the basic framework
given by system (2)–(3). We drop assumption (C) and extend assumption (A) slightly
by assuming that there is an Allee threshold 0 < K− < K , such that g(x) < 0 for
0 < x < K− and g(x) > 0 for K− < x < K . This assumption corresponds to a strong
Allee effect of the prey population, with negative growth rates at low prey densities.
This implies ν(m) < 0 for 0 < m < m− and ν(m) > 0 for m− < m < m+. Thus, for
the mean predator density we have φy(m) = 0 for all 0 < m ≤ m−, since no strictly
positive solutions exist at all. On the other hand, strictly positive attractive solutions
may exist for m− < m < m+ and indeed they surely exist whenever ν′(m) < 0 is ful-
filled, since in this case the unique equilibrium E∗ is locally stable. And since the prey
nullcline crosses the prey axis from above at x = K , it has negative slope at least in a
neighborhood of K , which implies φy(m) > 0 = φy(m−) for some m− < m < m+.

Example 4 Consider a model with the following growth and predation terms (Conway
and Smoller 1986; Bazykin 1998; Wang et al. 2011)

g(x) = g4(x) = r(1 − x)(x − K−),
ρ(x) = ρ4(x) = ax .

The predation term is of simple Lotka–Volterra form, while the growth term implies
an Allee effect with carrying capacity K = 1 and Allee threshold 0 < K− < 1. The
system possesses a unique positive equilibrium E∗ which exists for m− = εaK− <

m < εa = m+. A numerical simulation of the change of the predator mean density
in response to its mortality rate is presented in Fig. 2. The behavior of the mean value
φy reflects that below some bifurcation value mc > m− no strictly positive solutions
exist, this is the extinction region in Fig. 2. There is a sudden increase in predator
mean density at mc, where a strictly positive limit cycle arises via a global bifurcation
(van Voorn et al. 2007). At the Hopf bifurcation value m0 the mean value coincides
with the equilibrium E∗ which is stable for all m > m0. For a further increasing
predator mortality the mean density follows the downslope of the prey nullcline until
the predator goes extinct again.
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Fig. 2 Mean predator population density (solid line) versus predator mortality for the model in Example 4
with an Allee effect in the prey population. Predator density at the unique equilibrium (dashed line) coin-
cides with the mean value when the equilibrium is stable and differs from the mean value when it is unstable.
The arrow labeled with extinction indicates the regime, where no attracting strictly positive solutions exist.
mc refers to the global bifurcation in which a limit cycle appears. m0 denotes the parameter value where
the limit cycle disappears in a Hopf bifurcation

5 Hydra effect in a three-dimensional model

The general two-species model (2)–(3) gives rise to a unique equilibrium, whose sta-
bility is easily determined. This was exploited to derive elementary conditions for the
occurrence of a hydra effect of the predator population. In contrast to this, the situa-
tion becomes considerably more complicated if there is more than one pure consumer
of the prey x . The problems arise mainly due to the fact that in contrast to the two-
dimensional case (2)–(3), such systems do not allow for stable coexistence at a unique
equilibrium of all species. Nevertheless, coexistence of all species is possible in the
form of strictly positive nonstationary solutions. The existence of such solutions for
certain systems of two pure predators and one prey has been proved by McGehee and
Armstrong (1977), which has been extended by Zicarelli (1975) to the case of an arbi-
trary number of predators coexisting on one prey species. For an illustrative example,
we will focus on one particular system, which has been proposed by Armstrong and
McGehee (1980).

Example 5 The pure coupled resource–consumer equations for a Lotka–Volterra-type
predator y, a Holling-type II predator z and the shared logistically growing prey x read

ẋ =
[

r
(

1 − x

K

)
− a1 y − a2z

h + x

]
x, (4)

ẏ = [ε1a1x − my]y, (5)

ż =
[
ε2

a2x

h + x
− mz

]
z. (6)
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Note that the predator–prey subsystems on the invariant planes (x, y, 0) and (x, 0, z)
are of Gause-type. A hydra effect never occurs in the Lotka–Volterra subsystem (x, y),
but a hydra effect always occurs in the (x, z) Rosenzweig–MacArthur subsystem, cf.
Examples 1 and 2, respectively. Due to the lack of strictly positive stationary solutions
however, these results cannot be easily extended to the full two-predator and one-prey
system. In the full three-dimensional system, complicated periodic and chaotic solu-
tions may be observed, as well as coexisting alternative attractors (Abrams et al. 2003;
Sieber and Hilker 2011).

Let E∗
y = (x∗

y , y∗, 0) and E∗
z = (x∗

z , 0, z∗) denote the semi-trivial equilibria in the
(x, y, 0) and (x, 0, z) predator–prey subsystems, respectively. A necessary condition
for the existence of strictly positive solutions is x∗

z < x∗
y , since otherwise the semi-

trivial equilibrium E∗
y becomes globally stable. Assume now that a strictly positive

solution exists and that it is periodic with period T . In this case, by integrating Eq. (5)
from 0 to T we immediately obtain the mean prey density along this periodic orbit as

φx (my) = my

ε1a1
= x∗

y .

The Lotka–Volterra predator y completely determines the mean prey density in the full
three-dimensional predator–prey system, regardless of the biological and ecological
parameters of the Holling predator z. In fact, this is of course the case with any Lotka–
Volterra predator in any purely prey-dependent predator–prey system with arbitrary
many predators. The presence of a single Lotka–Volterra predator in an ecological
model community determines the mean amount of prey at any time and it also implies
the well-known result that two or more linear predators cannot coexist on a single
shared prey (McGehee and Armstrong 1977).

So while we cannot expect to derive an analytical expression for the mean predator
densities of system (4)–(6), we exactly know how much prey there is on average. This
can be used to derive upper bounds for both predator mean densities. In a similar
fashion as in the two-dimensional Gause-type model, we obtain from Eq. (4)

φy < r − φx (my)

K
= r − my

ε1a1 K
,

φz <
r

a2

[(
1 − h

K

)
φx (my)+ h

]
= r

a2

[(
1 − h

K

)
my

ε1a1
+ h

]
.

Apparently, an increase in the prey carrying capacity K seems beneficial for the whole
ecological community, since it increases the upper bounds for both predator mean den-
sities. However, in the case of unlimited carrying capacity K → ∞, the upper bounds
for both predators approach finite values. As one would expect, the mortality rate
my adversely affects the upper bound for the mean value of predator y on the one
hand and increases the upper bound for φz on the other hand. The mortality rate mz

however does not change the upper bounds at all, again reflecting the dominance of
the linear predator. Also, the first inequality gives another necessary condition for
the existence of strictly positive solutions. The mean value of predator y can only be
positive, if x∗ < r K , giving the complete necessary condition x∗

z < x∗
y < r K for
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Fig. 3 Mean population densities (prey x : dashed; linear predator y: dotted; nonlinear predator z: solid)
versus predator z mortality mz for the three-species exploitative competition model (4)–(6). Regimes of
qualitatively different system dynamics are indicated by arrows. A Cyclic coexistence of prey x and non-
linear predator z (Rosenzweig–MacArthur subsystem). B Cyclic coexistence of all three species. C Alter-
native cyclic and chaotic attractive solutions. Sudden extinction of the nonlinear predator z at m = 0.4.
For mortality rates larger than 0.4 stationary coexistence of prey x and linear predator y. Parameters are
r = 1, K = 1, a1 = 1, a2 = 0.5, h = 0.1,my = 0.4, ε1 = ε2 = 1

strictly positive solutions. For a further analysis of the predator mean densities, we
now turn to numerical simulations.

In Fig. 3 a numerical approximation of the population mean densities for varying
predator z mortality mz is shown for model (4)–(6). Note that varying mz only affects
the stationary point x∗

z in the (x, z) subsystem, while x∗
y remains constant. If a small

amount of predator y is introduced into the system, it is clearly not able to establish
unless a critical mortality rate m− is exceeded. This is region A in Fig. 3. After estab-
lishment of predator y, in region B we observe cyclic coexistence of all three species
and the corresponding mean prey density remains fixed at φx (mz) = x∗

y as expected.
Clearly, in this region an increasing predator z mortality mz is beneficial for the first
predator y, reflected by an increasing predator mean value φy(mz).

In region C , at least two alternative attractors may coexist, both of which may be
periodic or chaotic (Sieber and Hilker 2011). Both predator mean densities show a
more irregular behavior in this region with several small magnitude non-smooth hydra
effects occurring when the fixed initial condition switches from one basin of attraction
to another or when one of the attractors vanishes in a boundary crisis.

Over the whole range of mortality rates, however, the predator z mean density
φz(mz) clearly shows a hydra effect, which is even more pronounced after predator y
has established in the system, leading to a doubling in its initial value until the mortality
rate mz reaches a critical value. This critical value of mz is given by

mz = ε2a2my

ε1a1h + my
⇔ x∗

y = x∗
z . (7)
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Table 1 Hydra effects occur in various nonlinear standard predator–prey models

Model Reference Biological mechanism Hydra effect

Example 1 Volterra (1931) Linear functional response No

Example 2 Rosenzweig and MacArthur (1963) Type II functional response Yes

Example 3 Yodzis (1989) Type III functional response Yes

Example 4 Bazykin (1998) Prey with strong Allee effect Yes, non-smooth

Example 5 Armstrong and McGehee (1980) Two predators (linear/nonlinear) Yes, smooth
and non-smooth

If mz is increased over this critical value, a sudden extinction of the predator z popu-
lation can be observed. This extinction can easily be understood in terms of stability
of the boundary equilibria, since the stationary solution E∗

y in the (x, y) subsystem
becomes globally stable for x∗

y < x∗
z . However, from a biological viewpoint, this sharp

threshold phenomenon is an interesting effect and even more so, since the increasing
predator mean density right before the catastrophic crash gives the impression of a
healthy population.

6 Discussion

The analytical and numerical results above show that hydra effects are a typical fea-
ture of Gause-type predator–prey systems, whenever the model allows for an unstable
non-trivial equilibrium. Table 1 summarizes the results from the examples that have
been discussed in the text.

The examples have also shown that one can distinguish between two qualitatively
different types of hydra effects. A smooth hydra effect is due to a smooth change in
the shape of an attractor, like changes in the amplitude of a limit cycle as in Examples
2 and 3. A non-smooth hydra effect, by contrast, is associated with an abrupt change
in the long-term behavior of a solution starting at a particular initial condition. This
change can either be due to a global bifurcation as in Example 4, where a strictly
positive attractive solution arises suddenly at a certain mortality rate. Alternatively,
the long-term behavior of a solution might change abruptly because changing the mor-
tality rate alters the shape of the basins of attraction of coexisting attractors and the
initial condition switches from one basin of attraction to another one as in Example 5.

The hydra effect is closely associated with the imminent collapse of the respective
species for which the hydra effect is observed. This is due to the fact that an increase
in predator mean density has to occur right before maximal predator population sizes
are reached, after which a further increase of the mortality rate necessarily leads to a
decline in population size. The population collapse is most pronounced and unexpected
in the case of two predators coexisting on one shared prey species (Example 5), where
there is a distinct critical mortality rate at which the sudden collapse of the seemingly
healthy predator population occurs. In the case of just one predator, the imminent
extinction of the predator is indicated by a continuous but nevertheless very rapid
decline in mean population density in response to further increasing mortality rate
(cf. Fig. 1). This has the implication that the observation of mean population densities
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alone may lead to false assumptions regarding the persistence of a population. In fact,
catastrophic crashes are inherently present in models with purely prey-dependent pre-
dators. This is especially of concern when the predator population is harvested, see
Remark 2.

The general Gause-type model (2)–(3) is a cornerstone of predator–prey ecology.
It has been used in various specific forms and the results presented here show that
hydra effects are typically present in all of these variants, except for the simplest
Lotka–Volterra models. It is therefore striking that direct evidence for the existence of
hydra effects in natural populations is rare. This lack of empirical evidence has partly
been attributed to the lack of appropriate observations (Abrams 2009). Another cause
for the apparent discrepancy at least between the predator–prey models investigated
here and empirical data, however, might be attributed to shortcomings of the general
model (2)–(3).

A prominent peculiarity of the model is that the intrinsic growth rate of the predator
does not depend on its own density. This feature greatly simplifies the analysis of the
model, but given that “[i]n real life, we never expect to encounter pure resource–con-
sumer systems” (Turchin 2003, p. 36) it is certainly worthwhile to address the problem
of hydra effects in non-pure resource–consumer systems. An obvious way to make
the predator growth rate dependent on its own density is to add a quadratic closure
term reflecting intraspecific competition to the predator equation (3), thereby implic-
itly introducing an upper density bound for the predator population. A corresponding
variant (Bazykin 1998, p. 67) of the Rosenzweig–MacArthur model (cf. Example 2)
is inherently more stable (Turchin 2003, p. 98) and thus the parameter range for which
a hydra effect might occur is greatly reduced. In addition to quadratic closure, there
are other biologically meaningful mechanisms which make the predator growth rate
dependent on its own density, such as ratio-dependent predation (Abrams and Ginzburg
2000) and predator interference (Beddington 1975; DeAngelis et al. 1975). While the
relative importance of these factors is usually difficult to measure in real populations,
it is an interesting question for future research whether they may resolve at least in part
the apparently paradoxical phenomenon of hydra effects in predator–prey models.
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